This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Synthesis and characterization of pentagonal bipyramidal organotin(IV) complexes of 2,6-diacetylpyridine Schiff bases of S-alkyl- and aryldithiocarbazates

Mohammad Akbar Aliá; Aminul Huq Mirzaª; Lim Kok Weia; Paul V. Bernhardtt; Olaniran Atchade ${ }^{\text {c }}$; Xueqing Song ${ }^{\text {c }}$; George Eng ${ }^{\text {c }}$, Leopold May ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Negara Brunei Darussalam ${ }^{b}$ Department of Chemistry, The University of Queensland, QLD 4072, Australia ${ }^{\text {c }}$ Department of Chemistry and Physics, University of the District of Columbia, Washington, DC 20008, USA ${ }^{d}$ Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA

First published on: 30 March 2010

To cite this Article Akbar Ali, Mohammad , Huq Mirza, Aminul, Kok Wei, Lim , Bernhardt, Paul V., Atchade, Olaniran , Song, Xueqing, Eng, George and May, Leopold(2010) 'Synthesis and characterization of pentagonal bipyramidal organotin(IV) complexes of 2,6-diacetylpyridine Schiff bases of S-alkyl- and aryldithiocarbazates', Journal of Coordination Chemistry, 63: 7, 1194 - 1206, First published on: 30 March 2010 (iFirst)
To link to this Article: DOI: 10.1080/00958971003739798
URL: http://dx.doi.org/10.1080/00958971003739798

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and characterization of pentagonal bipyramidal organotin(IV) complexes of 2,6-diacetylpyridine Schiff bases of S-alkyl- and aryldithiocarbazates

MOHAMMAD AKBAR ALI* \dagger, AMINUL HUQ MIRZA \dagger, LIM KOK WEI \dagger, PAUL V. BERNHARDT \ddagger, OLANIRAN ATCHADE§, XUEQING SONG§, GEORGE ENG§ and LEOPOLD MAY
\dagger Department of Chemistry, Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Negara Brunei Darussalam
\ddagger Department of Chemistry, The University of Queensland, QLD 4072, Australia
§Department of Chemistry and Physics, University of the District of Columbia, Washington, DC 20008, USA
【Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA

(Received 30 November 2009; in final form 2 December 2009)

Abstract

New organotin(IV) complexes with empirical formula $\operatorname{Sn}(S N N N S) \mathrm{R}_{2}$, where $S N N N S$ is the dianionic form of 2,6-diacetylpyridine Schiff bases of S-methyldithiocarbazate (H_{2} dapsme) or S-benzyldithiocarbazate $\left(\mathrm{H}_{2} \mathrm{dapsbz}\right)$ and $\mathrm{R}=\mathrm{Ph}$ or Me , have been prepared and characterized by IR, UV-Vis, NMR and Mössbauer spectroscopic techniques and conductance measurements. The molecular structures of the $\mathrm{Sn}($ dapsme $) \mathrm{R}_{2}(\mathrm{R}=\mathrm{Ph}$ and Me$)$ have been determined by single crystal X-ray diffraction techniques. Both complexes have a distorted pentagonal-bipyramidal geometry in which the tin is coordinated by a dinegatively charged pentadentate chelating agent via pyridine nitrogen, two azomethine nitrogens, and two thiolate sulfurs. The five donors $\left(\mathrm{N}_{3} \mathrm{~S}_{2}\right)$ provided by the Schiff base occupy the equatorial plane close to a pentagonal planar array while the carbanion ligands occupy axial sites.

Keywords: Organotin(IV) complexes; Dithiocarbazates; 2,6-Diacetylpyridine Schiff bases of S-alkyldithiocarbazates; Seven-coordinate organotin(IV) complexes

1. Introduction

Coordination chemistry of pentadentate thiosemicarbazones derived from 2,6-diacetylpyridine has received considerable attention [1-17] due to their ability to form stable metal complexes with both transition and main group metals having interesting structural features and potential application as chemotherapeutic agents [3b]. Although a large number of pentagonal-bipyramidal complexes of $\operatorname{Sn}(\mathrm{IV})$ [9, 10], $\mathrm{Sn}(\mathrm{II})$ [2], $\mathrm{Zn}(\mathrm{II})$ [1, 6], $\mathrm{Cd}(\mathrm{II})$ [1], $\mathrm{In}(\mathrm{III})$ [14], and $\mathrm{Mn}(\mathrm{II})$ [12, 13] with pentadentate

[^0]

Figure 1. The thione (left) and thiol (right) tautomeric forms of H_{2} dapsme $(\mathrm{R}=\mathrm{Me})$ and H_{2} dapsbz $(\mathrm{R}=\mathrm{bz})$.
thiosemicarbazones have been structurally characterized, less work has been reported on the related 2,6-diacetylpyridine Schiff bases of S-alkyldithiocarbazates (figure 1), which have a backbone similar to that of 2,6-diacetylbis(thiosemicarbazones) but exhibit significantly different coordination chemistry. For example, the 2,6-diacetylpyridine Schiff base of S-benzyldithiocarbazate $\left(\mathrm{H}_{2}\right.$ dapsbz; figure 1 ; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) reacts with a nickel(II) salt producing a dinuclear nickel(II) complex containing an unusual bridging pyridine N -donor [18]. With zinc(II), it forms a very different dimeric zinc(II) complex where each ligand binds to one $\mathrm{Zn}(\mathrm{II})$ as a tridentate complex and as a bidentate complex to the other $\mathrm{Zn}(\mathrm{II})$ [19]. With $\operatorname{tin}(\mathrm{IV})$ iodide and chloride, these ligands have been shown to yield pentagonal-bipyramidal tin(IV) complexes [20].

In view of the potential applications of organotin complexes of sulfur-nitrogen chelating agents in industry and chemotherapy and as part of our ongoing study of metal complexes of dithiocarbazate ligands, we report here the synthesis and characterization of some seven-coordinate organotin(IV) complexes of two pentadenate dithiocarbazate ligands together with the X-ray crystal structures of $\left[\mathrm{Sn}(\right.$ dapsme $) \mathrm{R}_{2}$] ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{3}$).

2. Experimental

2.1. Chemicals

All chemicals were of analytical reagent grade and used without purification. Dichlorodiphenyltin(IV) and dichlorodimethyltin(IV) were purchased from Aldrich Chemical Company. The ligands were prepared as described in our previous papers [18, 21]. All physical measurements and analytical procedures used in this work were similar to those described previously [1].

2.2. Preparation of the complexes

A general method of preparation for all $\operatorname{Sn}(S N N N S) \mathrm{R}_{2}(\mathrm{~L}=$ dapsme or dapsbz, $\mathrm{R}=\mathrm{Ph}$ or Me) complexes was employed. To a solution of the ligand (1.5 mmol) in a boiling mixture of dichloromethane $(300 \mathrm{~mL})$ and abs. ethanol $(30 \mathrm{~mL})$ was added a solution of $\mathrm{SnPh}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{mmol})$. The mixture was then refluxed for 6 h . On standing overnight
the complexes crystallized from the reaction mixture and were filtered off, washed with ethanol and dried in a desiccator over anhydrous silica gel. Yield: 46-60\%; Sn (dapsme) Me_{2} required refluxing for 72 h . Crystals of Sn (dapsme) Ph_{2} and Sn (dapsme) Me_{2} suitable for X-ray analysis were obtained during the preparation of the complexes.

Found (\%): C, 46.80; H, 3.89; N, 10.97. Calcd for Sn (dapsme) Ph_{2} $\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{~S}_{4} \mathrm{Sn}\right)$ (\%): C, 46.73; H, 3.92; N, 10.92. Found (\%): C, 54.29; H, 4.04; N, 9.65. Calcd for $\left[\mathrm{Sn}(\right.$ dapsbz $\left.) \mathrm{Ph}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{OS}_{4} \mathrm{Sn}\right)(\%): \mathrm{C}, 54.68 ; \mathrm{H}, 4.34$; N, 9.62. Found (\%): C, 35.01; H, 4.20; N, 13.41. Calcd for Sn (dapsme) Me_{2} $\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}_{4} \mathrm{Sn}\right)(\%): \mathrm{C}, 34.76$; H, 4.08; N, 13.51.

2.3. Crystallography

Cell constants were determined by a least-squares fit to the setting parameters of 25 independent reflections, measured on an Enraf-Nonius CAD4 four-circle diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(0.71073 \AA$) and operating in the $\omega-2 \theta$ mode within the range $2<2 \theta<50^{\circ}$. Empirical absorption correction (Ψ scans) and data reduction were performed with the WINGX [22] suite of programs. The structures were solved by direct methods using SHELX86 and refined by a full-matrix least-squares analysis using SHELXL97 [23]. Non-hydrogen atoms were refined with anisotropic thermal parameters whereas hydrogens were included at estimated positions. The drawing of the molecule (figure 2) was produced with ORTEP3 [24]. A summary of crystal data, structure solution and refinement parameters are given in table 1 and selected bond lengths appear in table 2. The structure of Sn (dapsme) Me_{2} was disordered about a crystallographic mirror plane but refinement could be carried out without the need for any restraints on the bond lengths or angles. Due to the close proximity of the different components of this disorder, only partial anisotropic refinement could be carried out on the non-H atoms.

2.4. Spectral and conductance measurements

The IR, electronic, NMR, and conductance measurements were performed as described previously [19]. Mössbauer spectra were recorded using a Model MS-900 (Ranger Scientific Co., Burleson, TX) spectrometer in the acceleration mode with moving source geometry. A $5-m \mathrm{Ci} \mathrm{Ca}{ }^{119 m} \mathrm{SnO}_{3}$ source was used. The spectra were measured at 80 K using a liquid-nitrogen cryostat (CYRO Industries of America, Inc.). The velocity was calibrated at ambient temperature using a composition of BaSnO_{3} and tin foil (splitting $2.52 \mathrm{~mm} \mathrm{~s}^{-1}$). The resultant spectra were analyzed by a least-squares fit to Lorentzian shaped lines.

3. Results and discussion

3.1. Spectral measurements

In the solid state, the 2,6-diacetylpyridine Schiff bases of S-methyl- and S-benzyldithiocarbazate (figure 1 (left); $\mathrm{R}=-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) remain solely as the

Figure 2. Mössbauer spectrum of $\left[\mathrm{Sn}(\right.$ dapsme $\left.) \mathrm{Ph}_{2}\right]$.

Table 1. Crystal data for dimethyl and diphenyl Sn (dapsme).

	$\mathrm{Sn}($ dapsme $) \mathrm{Ph}_{2}$	$\mathrm{Sn}(\mathrm{dapsme}) \mathrm{Me}_{2}$
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{~S}_{4} \mathrm{Sn}$	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}_{4} \mathrm{Sn}$
Formula weight	642.43	518.30
Temperature (K)	293	293
Crystal system	Monoclinic	Orthorhombic
Space group	$C 2 / c$	Pcmn
Unit cell dimensions $\left(\AA{ }^{\circ}{ }^{\circ}\right)$		
a	$9.683(1)$	$10.032(1)$
b	$14.3492(7)$	$14.245(5)$
c	$19.133(2)$	$14.355(2)$
β	$102.005(8)$	
Volume $\left(\AA^{3}\right), Z$	$2600.3(4), 4$	$2051.4(8), 4$
Calculated density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.641	1.678
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	1.329	1.662
$F(000)$	1296	1040
Independent reflection	$2283[R(\mathrm{int})=0.0295]$	$1874[R(\mathrm{int})=0.0186]$
Observed reflection $(I>2 \sigma)$	1879	1585
R indices (all data)	$R_{1}=0.0898, w R_{2}=0.3187$	$R_{1}=0.0352, w R_{2}=0.0989$

thione tautomer $[18,21]$ although in principle, they are capable of exhibiting thione-thiol tautomerism since they possess the thioamide $-\mathrm{NH}-\mathrm{C}=\mathrm{S}$ functional group. In solution they can, however, exist as an equilibrium mixture of both the thione and thiol tautomers. We have previously shown that in DMSO- d_{6} the ligands exhibit a broad ${ }^{1} \mathrm{H}$ NMR signal at $c a 12.65 \mathrm{ppm}$, attributable to the resonance of the sec NH proton. The appearance of the $-\mathrm{NH}-$ signal at ca 13 ppm and the absence of any SH signal at ca 4.00 ppm indicate that in DMSO both Schiff bases also remain in their thione forms, with the sec NH protons being intermolecularly hydrogen bonded to a

Table 2. Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ of dimethyl and diphenyl $\operatorname{Sn}($ dapsme $)$.

	Sn (dapsme) Ph_{2}	Sn (dapsme) Me_{2}
Sn1-S1/Sn1-S3	$2.645(5)$	2.579(4)/2.704(3)
Sn1-N2/Sn1-N4	2.42(1)	2.31(3)/2.52(3)
Sn1-N3	2.43(2)	$2.371(5)$
Sn1-C ${ }_{\text {axial }}$ (Ph or Me)	2.16 (2)	2.246(4), 2.194(6)
S1-Sn1-S1'/S1-Sn1-S3	80.6(2)	80.3(2)
S1-Sn1-N2/S3-Sn1-N4	72.5(3)	74.9(5)/70.4(6)
N3-Sn1-N2/N3-Sn1-N4	67.2(3)	68.0(5)/66.3(6)
$\mathrm{C}_{\text {axial }}-\mathrm{Sn} 1-\mathrm{C}_{\text {axial }}$	171.2(9)	171.6(2)
$\mathrm{C}_{\mathrm{axial}}-\mathrm{Sn} 1-\mathrm{S} 1 / \mathrm{C}_{\mathrm{axial}}-\mathrm{Sn} 1-\mathrm{S1} 1^{\prime}$ (or S3)	92.8(4)/93.9(5)	93.5(1)/93.5(2)
$\mathrm{Caxal}_{\text {axial }}$-Sn1-N3	85.6(4)	85.8(1)/85.8(2)

thione sulfur of another molecule or the NH protons participate in hydrogen bonding with DMSO. In the solid state, the Schiff base remains as the thione tautomer. In an ethanol-dichloromethane mixture and in the presence of organotin(IV) dichloride they rearrange to the thiol tautomeric forms forming organotin(IV) complexes of their deprotonated thiolate forms. The related thiosemicarbazones, however, do not always deprotonate in neutral media and as a result, complexes of both protonated [25, 26] and deprotonated [27] thiosemicarbazones have been synthesized. Examples of metal complexes in which both protonated and deprotonated forms of a thiosemicarbazone exist in the same complex have also been reported [28]. In contrast to thiosemicarbazones, Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid almost invariably deprotonate in the presence of metal salts and coordinate in their mercaptide forms even in the presence of mineral acids.

Reaction of the Schiff bases with $\mathrm{SnR}_{2} \mathrm{Cl}_{2}(\mathrm{R}=\mathrm{Ph}, \mathrm{Me})$ in a refluxing mixture of ethanol and dichloromethane yields bright orange crystalline organotin(IV) complexes with empirical formula $\operatorname{Sn}(S N N N S) \mathrm{R}_{2}$, where $S N N N S=$ dapsme or dapsbz. The complexes were sparingly soluble in acetonitrile, chloroform and dichloromethane and slightly more soluble in DMSO in which conductivity measurements were made. The molar conductances of the complexes in DMSO (1.6-2.0 $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) indicate that they are non-electrolytes in this solvent. The conductance data further indicate that the ligands are coordinated to tin(IV) in their doubly deprotonated forms and that the alkyl groups are also coordinated to tin(IV).

A comparison of IR spectra of the ligands with those of the tin complexes (table 3) shows that the sec ν_{NH} bands of the free ligands at $3154-3176 \mathrm{~cm}^{-1}$ are absent in spectra of the complexes, indicating that the ligands deprotonate at this position upon coordination to tin. The shift of the azomethine $\nu_{\mathrm{C}=\mathrm{N}}$ of the free H_{2} dapsme and H_{2} dapsbz ligands from $1600-1617 \mathrm{~cm}^{-1}$ to $1573-1595 \mathrm{~cm}^{-1}$ in the complexes also supports coordination of the ligands to tin via the azomethine nitrogens. This is further supported by the shift of the $\nu_{\mathrm{N}-\mathrm{N}}$ bands of the free ligand to higher wavenumber in spectra of the tin complex [29]. The splitting of the $v_{\mathrm{a}} \mathrm{CSS}$ band of the ligand at $c a$ $959 \mathrm{~cm}^{-1}$ in IR spectra of the complexes indicates coordination of the ligands to tin via one sulfur [30].

The electronic spectral data of the complexes (table 3) show that in addition to intraligand bands in the range $345-358 \mathrm{~nm}$ and $256-264 \mathrm{~nm}$ assignable to the $n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ transitions, respectively, the $\mathrm{S} \rightarrow \mathrm{Sn}^{\mathrm{IV}}$ charge-transfer band appears as a shoulder at 428-457 nm in spectra of the complexes, giving them their characteristically

Table 3. IR and electronic spectral data of dimethyl and diphenyl Sn (dapsme). ${ }^{\text {a }}$

Compound	ν_{NH}	$\nu_{\mathrm{C}=\mathrm{N}}$	$\nu_{\mathrm{N}-\mathrm{N}}$	ν_{CSS}	$\lambda_{\text {max }}(\mathrm{nm})$
H_{2} dapsme ${ }^{\mathrm{b}}$	$3176 \mathrm{~s}, \mathrm{br}$	1617 m	1065 s	959 s	$345(4.2), 256(4.5)$
$\mathrm{H}_{2} \mathrm{dapsbz}^{\mathrm{c}}$	$3157 \mathrm{br}, \mathrm{w}$	1600 m	1102 m	845 w	358,263
$\mathrm{Sn}($ dapsme $) \mathrm{Ph}_{2}$	-	1595 m	1138 m	844 s	$c a 457 \mathrm{sh}, c a 398,298$
				968 sh	
$\mathrm{Sn}($ dapsbz $) \mathrm{Ph}_{2}$	-	1573 m	1112 w	948 s	$c a 428 \mathrm{sh}, c a 348,281$
$\mathrm{Sn}($ dapsme $) \mathrm{Me}_{2}$	-	1590 m	1136 m	930 sh	950 sh
				$c a 440 \mathrm{sh}, 343,241$	

Notes: ${ }^{\text {a }}$ IR bands $\left(\mathrm{cm}^{-1}\right)$ UV spectra in Nujol.
${ }^{\mathrm{b}}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from Ref. [6].
${ }^{c}$ Ref. [12].
brilliant orange/yellow color. Similar charge transfer bands have also been observed in metal complexes of thiosemicarbazones [31, 32].

Table 4 lists ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of the ligands and their organotin(IV) complexes. $\left[\mathrm{Sn}(\right.$ dapsme $)\left(\mathrm{CH}_{3}\right)_{2}$] had limited solubility in DMSO- d_{6} in which it also showed signs of decomposition and, therefore, meaningful NMR spectral data for this compound could not be obtained. However, changes in spectra of the present ligands upon complexation with tin(IV) follow the same pattern as observed for related tin(IV) complexes of other pentadentate ligands [5, 9]. These may be summarized as follows: (i) the $\mathrm{N}(\mathrm{H})$ signal at $c a 12.65 \mathrm{ppm}$ of the free ligands are absent in spectra of the complexes because of deprotonation of the ligands during coordination with tin; (ii) the pyridine ring protons are deshielded on coordination via the pyridine nitrogen but the $-\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$ protons are not affected even though coordination via azomethine nitrogen occurs. The ${ }^{13} \mathrm{C}$ NMR spectrum of Sn (dapsme) Ph_{2} could not be recorded because of insufficient solubility in DMSO- d_{6}. However, in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{Sn}($ dapsbz $) \mathrm{Ph}_{2}$, the carbon of the thiocarbonyl group undergoes significant shielding on coordination to $\operatorname{tin}(I V)$, in contrast with the ${ }^{13} \mathrm{C}$ NMR spectra of the seven-coordinate tin(IV) complex of the related 2,6-diacetylpyridine thiosemicarbazone where only a small shift of this signal was observed [9]. The carbons of the methyl groups attached to the carbon of azomethine are deshielded on coordination with tin, similar to that found in related tin complexes [9].

Mössbauer spectra of the present organotin(IV) complexes exhibit a single quadrupole-split doublet, the two peaks being slightly asymmetric. A representative spectrum is shown in figure 2 and the isomer shift and quadrupole splitting values are given in table 5 .

The isomer shifts and quadrupole splittings are comparable to the data reported for $\mathrm{Sn}($ dapsme $)(\mathrm{n}-\mathrm{Bu})_{2}$ [17], dapsme and other pentagonal bipyramidal diphenyltin(IV) complexes of the related dibutylpentadentate 2,6-diacetylbis(thiosemicarbazone) ligands $[8,16]$ and dithiocarbazate [16]. As expected, the isomer shift value of the Sn (dapsme) Ph_{2} complex is lower than that of $\mathrm{Sn}($ dapsme $)\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{Sn}($ dapsme $)(\mathrm{n}-\mathrm{Bu})_{2}$ because of the lower electron donating ability of phenyl compared to alkyl. Furthermore, the isomer shift of $\operatorname{Sn}($ dapsme $) \mathrm{Ph}_{2}\left[1.19 \mathrm{~mm} \mathrm{~s}^{-1}\right]$ is lower than that of the parent acid, $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\left[1.34 \mathrm{~mm} \mathrm{~s}^{-1}\right.$] [33], probably because of re-hybridization to higher coordination for $\mathrm{Sn}^{\mathrm{IV}}$ in the complex relative to the parent acid. This can be attributed to involvement of the d orbitals which now take part in the

Table 4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for the Schiff bases and their tin(IV) complexes in DMSO- d_{6}.

	H_{2} dapsme	H_{2} dapsbz	$\mathrm{Sn}($ dapsme $)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	[Sn(dapsbz) $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
${ }^{1} \mathrm{H}$ NMR assignments				
-NH	12.45(s, br, 1H)	12.70(s, br, 1H)	-	-
py-H	$7.90-7.93(\mathrm{~m})$	$8.05(\mathrm{~d}, 2 \mathrm{H})$	8.30(s,H)	$8.40(\mathrm{~s}, 1 \mathrm{H})$
	$\begin{aligned} & 7.74-7.79(\mathrm{~m}) \\ & 7.60(\mathrm{t}, 2 \mathrm{H}) \end{aligned}$	$7.90(\mathrm{t}, 1 \mathrm{H})$		8.74(d, 2 H)
Ar-H		7.22-7.30,	7.10-7.25(m)	$7.28-7.47(\mathrm{~m}, 5 \mathrm{H})$
		7.33-7.39(m,5H)		6.90-7.00(m)
				$7.07-7.28(\mathrm{~m})$
				7.36-7.85(m)
$-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{3}$	2.30 (s, 6H)	2.50(s, 6 H)	2.30(s, 6 H)	2.42(s)
$-\mathrm{SCH}_{2} / \mathrm{SCH}_{3}$	3.12(s, 6 H)	4.48(s, 4H)	2.78(s,6H)	4.51(s,4H)
${ }^{13} \mathrm{C}$ NMR assignments				
CS	201.6	199.8	-	185.1
$-\mathrm{C}=\mathrm{N}$	154.5	154.3		158.9
C_{py}	152.2	152.2		143.4
	138.3	138.4		132.0
	121.7	121.8		129.7
$\mathrm{C}_{\text {Ar }}$	-	137.6	-	157.5
		130.1		148.0
		129.4		138.3
		129.4		128.0
		127.5		
$\mathrm{SCH}_{2} / \mathrm{SCH}_{3}$	18.0	39.0		36.8
$-\mathrm{CH}_{3}$	13.7	13.8		16.1

Table 5. Mössbauer spectral data of some pentagonal bipyramidal organotin(IV) complexes.

Compound	$\delta\left(\mathrm{mm} \mathrm{s}^{-1}\right)$	$\Delta\left(\mathrm{mm} \mathrm{s}^{-1}\right)$	ρ	Reference
$\mathrm{Sn}($ dapsme $)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}{ }^{\mathrm{a}}$	1.19	3.05	2.56	This work
$\mathrm{Sn}($ dapsme $)\left(\mathrm{CH}_{3}\right)_{2}$	1.51	3.16	2.09	This work
$\mathrm{Sn}($ dapsme $)(\mathrm{n}-\mathrm{Bu})_{2}$	1.46	3.53	2.41	[17]
$\left[\mathrm{Sn}(\text { dapsbz })\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]^{\mathrm{b}} \cdot \mathrm{H}_{2} \mathrm{O}$	1.67	3.64	2.98	This work
$\left[\mathrm{Sn}\left(\right.\right.$ daptsc) $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot 2 \mathrm{DMF}^{\mathrm{c}}$	1.22	2.84	2.32	$[9]$
$\left[\mathrm{Sn}(\mathrm{Hdaptsc})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \mathrm{Cl}^{\mathrm{d}}$	1.21	3.13	2.59	$[8]$

${ }^{\text {a }}$ dapsme $=$ doubly deprotonated form of the 2,6-diacetylbis(S-methyldithiocarbazate).
${ }^{\mathrm{b}}$ dapsbz $=$ doubly deprotonated anion of the 2,6-diacetylbis(S-benzyldithiocarbazate).
${ }^{c}$ daptsc $=$ dianionic form of the 2,6-diacetylbis(thiosemicarbazone).
${ }^{\mathrm{d}}$ Hdaptsc $=$ singly negatively charged 2,6 -2,6-diacetylbis(thiosemicarbazone).
$\mathrm{Sn}^{\mathrm{IV}}$ hybridization scheme, thus reducing the contribution of the s orbitals in the overall hybridization of the tin electrons [34]. However, similar values of the isomer shifts of $\left[\mathrm{Sn}(\right.$ dapsme $\left.)\left(\mathrm{CH}_{3}\right)_{2}\right]\left[1.51 \mathrm{~mm} \mathrm{~s}^{-1}\right]$ and the parent acid $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left[1.52 \mathrm{~mm} \mathrm{~s}^{-1}\right][35]$ show that hybridization is not the only contributing factor to the isomer shift.

The quadrupole splittings are comparable to the data reported for other seven-coordinate pentagonal bipyramidal complexes with sulfur-containing ligands $\left(\Delta=2.84-4.36 \mathrm{~mm} \mathrm{~s}^{-1}\right)$ [16]. As the distribution of ligands around tin become more symmetrical, Δ becomes smaller. In comparing the axial ligands in the Sn (dapsme) complexes, the diphenyl complex is more symmetrical than the dimethyl complex. The Δ increases and the symmetry of the ligands around tin decreases as the axial ligand changes from methyl to butyl and when the methyl in the other ligand is replaced by a
phenyl group. The Δ for $\left[\operatorname{Sn}(\operatorname{dapsbz})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is larger than the Δ 's for other complexes suggesting that the waters are coordinated to tin, decreasing the symmetry of the ligands around tin leading to an increase in Δ.

The ρ-values have been used to deduce the coordination number of tin in various organotin compounds. Values less than 2.1 have been identified with compounds in which tin is less than four-coordinate, while five- and higher coordination have been assigned to values greater than 2.1 [36]. In all spectra (table 5), ρ is greater than 2.1 so the coordination of the tin is greater than 4.

The semiquantitative relationship $|\Delta|=-4[R]\left(1-0.75 \sin ^{2} \theta\right)^{1 / 2}[16]$, where Δ is the experimentally observed Mössbauer quadrupole splitting, θ is the $\mathrm{R}-\mathrm{Sn}-\mathrm{R}$ angle in the complex and $[R]$ is the partial quadrupole splitting (PQS) of an alkyl group, has recently been used to calculate the PQS of alkyl and aryl groups in a fairly large number of seven-coordinate pentagonal-bipyramidal organotin complexes. Using this relationship we find the PQS values for the Ph and Me groups in Sn (dapsme) as -0.77 and -0.80 , respectively, which agree well with those reported for analogous organotin(IV) complexes recently reported by de Sousa et al. [16]. It, therefore, seems that the semi-empirical relationship shown above can be reasonably used to predict the $\mathrm{R}-\mathrm{Sn}-\mathrm{R}$ angle in pentagonal bipyramidal organotin(IV) complexes whose X-ray crystal structures are not available. The calculated angle, θ, for $\left[\mathrm{Sn}(\mathrm{dapsbz})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$ is 180° using the average PQS value of -0.80 .

3.2. The crystal structure of Sn (dapsme) $\boldsymbol{P h}_{2}$

The molecular structure of Sn (dapsme) Ph_{2} is illustrated in figure 3 together with the adopted numbering scheme. The complex has crystallographic two-fold symmetry with the axis passing through $\mathrm{Sn}, \mathrm{N} 3$, and C 4 . The coordination geometry approximates a

Figure 3. Molecular structure of $\mathrm{Sn}($ dapsme $) \mathrm{Ph}_{2}$ (30% probability ellipsoids).
pentagonal bipyramid with all equatorial coordinate angles involving adjacent donor atoms within 8° of their ideal value $\left(72^{\circ}\right)$. The axially coordinated phenyl ligands are within 5° of orthogonal with respect to the equatorial donor atoms. The planar pentadentate $S N N N S$ Schiff base in its deprotonated thiolate form is coordinated to tin at the equatorial position through the thiolate sulfurs, the two azomethine nitrogens and the pyridine nitrogen. The two unique $\mathrm{Sn}-\mathrm{N}$ distances are slightly higher than the sum of the non-polar covalent radii $2.15 \AA$. Both S-methyl groups point in the same direction in a roughly parallel disposition.

The equatorial $\mathrm{Sn}-\mathrm{S}$ and $\mathrm{Sn}-\mathrm{N}$ bond distances are similar to those observed for other tin(IV) complexes having similar geometries (table 6). In contrast with other tin(IV) complexes of related pentadentate thiosemicarbazone ligands [5, 19], the $\mathrm{Sn}-\mathrm{N}_{\mathrm{py}}$ bond distance in the present complex is close to the $\mathrm{Sn}-\mathrm{N}_{\text {azomethine }}$ distance. The higher basicity of the azomethine nitrogens relative to the pyridine nitrogen should lead to shorter $\mathrm{Sn}-\mathrm{N}_{\text {azomethine }}$ distances. This has in fact been observed in most four-, five-, and six-coordinate metal complexes of thiosemicarbazones [37]. The similarity of the $\mathrm{Sn}-\mathrm{N}_{\mathrm{py}}$ and $\mathrm{Sn}-\mathrm{N}_{\text {azomethine }}$ distances in the present complex may be ascribed to the geometric requirement of the structure in which tin(IV) bonds with the pyridine nitrogen in such a way that it prevents the closer approach of the two imine nitrogens, although the precision of the structure is rather low, so this may be obscuring genuine differences between the sets of coordinate bonds. The $\mathrm{Sn}-\mathrm{S}$ distance is typical of complexes of this type (table 6). Irrespective of the oxidation state of tin, all these complexes have comparable tin-donor atom distances. An examination of bond distances in the dithiocarbazate chain shows that the $\mathrm{C} 1-\mathrm{S} 1$ bond is longer than that observed in the free S-benzyldithiocarbazate [38] and other Schiff bases derived from related dithiocarbazates [39] present in their thione form as opposed to the ene-thiolate form of the coordinated anion. The N1-C1 bond (1.309(7) \AA) also shortens in the anion

Table 6. Comparison of bond tin-donor atom distances (\AA) in related seven-coordinate tin complexes.

Hadaptsc $=$ monodeprotonated form of the 2,6-diacetylpyridinebis(thiosemicarbazone); $\mathrm{H}_{2} \mathrm{dapsc}=$ neutral form of the 2,6-diacetylpyridinebis(semicarbazone); dapsme = doubly deprotonated form of the 2,6-diacetylpyridine Schiff base of S-methyldithiocarbazate; dapchemximtsc = doubly deprotonated form of 2,6-diacetylpyridinebis(3-hexamethyleneiminyl thiosemicarbazone).

Figure 4. The molecular structure of Sn (dapsme) Me_{2} (30% probability ellipsoids).
relative to that seen in the charged neutral analog due to the increasing $\mathrm{C}-\mathrm{N}$ bond order going from $-\mathrm{NH}-\mathrm{C}=\mathrm{S}$ to $-\mathrm{N}=\mathrm{C}-\mathrm{S}^{-}$.

3.3. The crystal structure of $\operatorname{Sn}($ dapsme $) \mathrm{Me}_{2}$

The complex is disordered about a crystallographic mirror plane with only Sn residing on this plane. A view of the molecular structure is shown in figure 4 while the disorder is portrayed in figure 5. The lack of H -bonding may be attributed to the complex being able to pack in two orientations that are each rotated by $\sim 4^{\circ}$ from the mirror plane. The two S-methyl groups adopt different orientations, further violating the crystallographic symmetry. This leads to significantly different $\mathrm{Sn} 1-\mathrm{S} 1$ and $\mathrm{Sn} 1-\mathrm{S} 3$ bond lengths (table 2). Notwithstanding the disorder of the structure, the coordinate angles again are close to that of a pentagonal bipyramid (table 2).

The $\mathrm{Sn}-\mathrm{S}$ and $\mathrm{Sn}-\mathrm{N}$ distances are comparable to those of other pentagonal bipyramidal organotin(IV) complexes of related ligands (table 6). As found in most tin(IV) complexes of pentadentate bis(thiosemicarbazones), the $\mathrm{Sn}-\mathrm{N}_{\mathrm{py}}$ distance in this complex is shorter than the $\mathrm{Sn}-\mathrm{N}_{\text {azomethine }}$ distance, although the azomethine nitrogen has higher basicity than the pyridine nitrogen atom. The geometric requirement of the doubly deprotonated pentadentate $S N N N S$ ligand is probably responsible for this behavior. Bond distances in the dithiocarbazate side chains of the two arms of the ligand are intermediate between single and double bonds, indicating delocalization of electrons in the $\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}-$ chains.

4. Conclusions

The 2,6-diacetylpyridine Schiff bases of S-methyl- and S-benzyldithiocarbazates, like most Schiff bases derived from S-alkyl esters of dithiocarbazic acid, remain as the

Figure 5. Disorder in the structure of Sn (dapsme) Me_{2}. The crystallographic mirror plane is perpendicular to the equatorial plane and runs vertically along the page bisecting the Sn and the two axial methyl ligands.
thione tautomer in both the solid state and solution. However, in the presence of organotin(IV) dichlorides they are converted to the iminothiol form, deprotonate and coordinate to tin(IV) as dinegative pentadentate $S N N N S$ chelating agents. The tendency of the ligands to deprotonate even in a neutral solution may be attributed to the extra stability gained through π-electron delocalization along the $-\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}-$ chains in the two arms of these ligands. Formation of stable 1:1 metal-ligand complexes with organotin(IV) dichlorides with elimination of HCl indicates that these ligands are capable of coordinating with non-transition metals, such as tin, even though they have both soft sulfur donors in their backbones. The ligands approximate a pentagonal array of donors, and the structures approach a pentagonal bipyramidal configuration despite the significantly different coordinate bonds made with $\mathrm{Sn}(\mathrm{IV})$. These results are an extension of our previous studies of the 2,6-diacetylpyridine Schiff bases of S-alkyl- and aryldithiocarbazate metal complexes [18-20]. In addition to interesting structural aspects, organotin complexes have been shown to possess various biocidal properties [39-44].

Supplementary material

Full crystallographic data in CIF format, CCDC Nos 655635 and 655636 for Sn (dapsme) Ph_{2} and Sn (dapsme) Me_{2}, respectively, have been deposited at the Cambridge Crystallographic Data Centre and are available on request from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgments

M. Akbar Ali and A.H. Mirza gratefully acknowledge the Department of Chemistry, Universiti Brunei Darussalam for supporting this work. The financial support for the ${ }^{119} \mathrm{Sn}$ Mössbauer work from the National Institute of Health, Biomedical Research Support Program (MBRS/SCORE, GM08005) is gratefully acknowledged. P.V. Bernhardt acknowledges support from the Australian Research Council and the University of Queensland.

References

[1] M. Akbar Ali, A.H. Mirza, W.B. Ejau, P.V. Bernhardt. Polyhedron, 25, 3337 (2006) and references therein.
[2] M.R. Bermejo, R. Pedrido, M.I. Fernandez, A.M. Gonzalez-Noya, M. Maneiro, M.J. Rodriguez, M.J. Romero, M. Vazquez. Inorg. Chem. Commun., 7, 4 (2004).
[3] (a) J.S. Casas, M.S. Garcia-Tasende, J. Sordo. Coord. Chem. Rev., 209, 197 (2000); (b) S.N. Pandeya, D. Siram, G. Nath, E. DeClercq. Eur. J. Pharm. Sci., 9, 25 (1999) and references therein.
[4] J.S. Casas, A. Castineiras, M.C. Rodriguez-Arguelles, A. Sanchez, J. Sordo, A. Vazquez-Lopez, E.M. Vazquez-Lopez. J. Chem. Soc., Dalton Trans., 2267 (2000).
[5] G.F. de Sousa, C.A.L. Filgueiras, A. Abras, S.S. Al-Juaid, P.B. Hitchcock, J.F. Nixon. Inorg. Chim. Acta, 218, 139 (1999).
[6] A. Bino, N. Cohen. Inorg. Chim. Acta, 20, 11 (1993).
[7] A.I. Matesanz, I. Cuadrado, C. Pastor, P. Souza. Z. Anorg. Allg. Chem., 631, 780 (2005).
[8] P.C. Moreno, R.H.P. Francisco, M.T. do, P. Gambardella, G.F. de Sousa, A. Abras. Acta Crystallogr., Sect. C, 53, 1411 (1997).
[9] J.S. Casas, A. Castineiras, A. Sanchez, J. Sordo, A. Vazquez-Lopez, M.C. Rodriguez-Arguelles, U. Russo. Inorg. Chim. Acta, 221, 61 (1994).
[10] G.F. de Sousa, D.X. West, C.A. Brown, J.K. Swearingen, J. Valdez-Lopez, R. Toscano, S. Hernandez-Ortega, M. Horner, R.J. Bertuluzzi. Polyhedron, 19, 841 (2000).
[11] S.O. Somerer, G.J. Palenik. Inorg. Chim. Acta, 183, 217 (1991).
[12] A.H. Othman, S.W. Ng. Acta Crystallogr., Sect. C, 51, 1059 (1995).
[13] R. Pedrido, M.R. Bermejo, M.J. Romero, M. Vazquez, A.M. Gonzalez-Noya, M. Maneiro, M.J. Rodriguez, M.I. Fernandez. J. Chem. Soc., Dalton Trans., 672 (2005).
[14] S. Abram, C. Maichle-Mossmer, U. Abram. Polyhedron, 17, 131 (1998).
[15] G. Dessy, V. Fares. Cryst. Struct. Commun., 10, 1025 (1981).
[16] G.F. de Sousa, V.M. Deflon, M.T. do, P. Gambardella, R.H.P. Francisco, J.D. Ardisson, E. Niquet. Inorg. Chem., 45, 4518 (2006).
[17] G.F. de Sousa, V.M. Deflon, E. Niquet. J. Braz. Chem. Soc., 12, 493 (2001).
[18] M. Akbar Ali, A.H. Mirza, R.J. Butcher, M.T.H. Tarafder, M.A. Ali. Inorg. Chim. Acta, 320, 1 (2001).
[19] M. Akbar Ali, A.H. Mirza, C.W. Voo, A.L. Tan, P.V. Bernhardt. Polyhedron, 23, 3433 (2003).
[20] M. Akbar Ali, A.H. Mirza, L.K. Wei, A.L. Tan, P.V. Bernhardt. Polyhedron, 23, 2037 (2004).
[21] S.M.M.H. Majumder, M. Akbar Ali, F.E. Smith, M.A.U. Mridha. Polyhedron, 7, 2183 (1988).
[22] L. Farrugia. J. Appl. Cryst., 32, 837 (1999).
[23] G.M. Sheldrick. SHELX, Programs for Crystal Structure Analysis, University of Göttingen, Germany (1997).
[24] L. Farrugia. J. Appl. Cryst., 30, 565 (1997).
[25] R. Gronbaek-Hazel. Acta Chem. Scand., 26, 365 (1972).
[26] (a) A. Mohan, P. Sharma, N.K. Jha. Inorg. Chim. Acta, 106, 17 (1985); A. Castineiras, R. Carballo, T. Perez. Polyhedron, 20, 441 (2001). (b) D.X. West, T.J. Romack, A.E. Liberta. Transition Met. Chem., 17, 256 (1992).
[27] (a) L. Carvalica, M. Nardelli, G. Fava. Acta Crystallogr., 15, 1139 (1962). (b) J. Valdez-Martinez, A. Sierra-Ramoco, C. Alvarez-Toledano, R.A. Toscano, G. Garcia-Topia. J. Organomet. Chem., 352, 321 (1983).
[28] P. Souza, A.I. Matesanz, V. Fernandez. J. Chem. Soc., Dalton Trans., 3011 (1996).
[29] R. Ugo. J. Organomet. Chem., 9, 395 (1937).
[30] P. Pelagatti, A. Venturini, A. Leporati, M. Carcelli, M. Costa, A. Bacchi, G. Pelizzi, C. Pelizzi. J. Chem. Soc., Dalton Trans., 2715 (1998).
[31] (a) E.W. Ainscough, E.N. Baker, A.M. Brodie, R.J. Cresswell, J.D. Ranford, J.M. Waters. Inorg. Chim. Acta, 170, 185 (1990); (b) E.W. Ainscough, A.M. Brodie, J.D. Ranford, J.M. Waters, K.S. Murray. Inorg. Chim. Acta, 197, 107 (1992).
[32] J.S. Casas, A. Castineiras, A. Sanchez, J. Sordo, A. Vazquez-Lopez, M.C. Rodriguez-Arguelles, U. Russo. Inorg. Chim. Acta, 221, 61 (1994); R.K. Harris, A. Nordon, K.D.M. Harris. Rapid Commun. Mass Spectrom., 21, 15 (2007).
[33] H.A. Stockler, H. Sano. Trans. Faraday Soc., 64, 57 (1968).
[34] R.S. Randall, R.W.J. Wedd, R.J. Sams. J. Organomet. Chem., 30, C19 (1971).
[35] D. Cunningham, M. Little, K. McLoughlin. J. Organomet. Chem., 165, 287 (1979).
[36] R.H. Herber, A. Stöckler, W.T. Reichle. J. Chem. Phys., 42, 2447 (1965).
[37] (a) D.K. Sau, R.J. Butcher, S. Chaudhuri, N. Saha. Polyhedron, 23, 5 (2004); (b) N.C. Kasuga, K. Sekino, C. Koumo, N. Shimada, M. Ishikawa, K. Nomiya. J. Inorg. Biochem., 84, 55 (2001); (c) E.W. Ainscough, A.M. Brodie, J.A. Ranford, J.M. Waters. J. Chem. Soc., Dalton Trans., 1251 (1997).
[38] S. Shanmuga, S. Raj, B.M. Yamin, Y.A. Yusof, M.T.H. Tarafder, H.-K. Fun, K.A. Crouse. Acta Crystallogr., Sect. C, 56, 1236 (2000).
[39] K.A. Crouse, K.-B. Chew, M.T.H. Tarafder, K.A. Kasbollah, A.M. Ali, B.M. Yamin, H.-K. Fun. Polyhedron, 23, 161 (2004).
[40] M. Nath. In Tin Chemistry: Fundamentals, Frontiers, and Applications, A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds), p. 413, John Wiley \& Sons, West Sussex, UK (2008).
[41] G. Eng, X. Song. In Tin Chemistry: Fundamentals, Frontiers, and Applications, A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds), p. 430, John Wiley \& Sons, West Sussex, UK (2008).
[42] H. Beraldo, G.M. de Lima. In Tin Chemistry: Fundamentals, Frontiers, and Applications, A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds), p. 443, John Wiley \& Sons, West Sussex, UK (2008).
[43] C. Pettinari, F. Marchetti. In Tin Chemistry: Fundamentals, Frontiers, and Applications, A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds), p. 454, John Wiley \& Sons, West Sussex, UK (2008).
[44] M.M. Whalen. In Tin Chemistry: Fundamentals, Frontiers, and Applications, A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds), p. 469, John Wiley \& Sons, West Sussex, UK (2008).

[^0]: *Corresponding author. Email: akbar@fos.ubd.edu.bn

